Proton transfer in concentrated aqueous hydroxide visualized using ultrafast infrared spectroscopy.
نویسندگان
چکیده
While it is generally recognized that the hydroxide ion can rapidly diffuse through aqueous solution due to its ability to accept a proton from a neighboring water molecule, a description of the OH(-) solvation structure and mechanism of proton transfer to the ion remains controversial. In this report, we present the results of femtosecond infrared spectroscopy measurements of the O-H stretching transition of dilute HOD dissolved in NaOD/D(2)O. Pump-probe, photon echo peak shift, and two-dimensional infrared spectroscopy experiments performed as a function of deuteroxide concentration are used to assign spectral signatures that arise from the OH(-) ion and its solvation shell. A spectral feature that decays on a ∼110 fs time scale is assigned to the relaxation of transiently formed configurations wherein a proton is equally shared between a HOD molecule and an OD(-) ion. Over picosecond waiting times, features appear in 2D IR spectra that are indicative of the exchange of population between OH(-) ions and HOD molecules due to deuteron transfer. The construction of a spectral model that includes spectral relaxation, chemical exchange, and thermalization processes, and self-consistently treats all of our data, allows us to qualitatively explain the results of our experiments and gives a lower bound of 3 ps for the deuteron transfer kinetics.
منابع مشابه
The Dynamics of Aqueous Hydroxide Ion Transport Probed via Ultrafast Vibrational Echo Experiments
We use peakshift, transient grating, and 2D IR measurements to probe the dynamics of NaOD solutions. Our experiments suggest that OD possesses a stable solvation shell and signatures of fast intermolecular proton transfer are observed.
متن کاملProton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy
Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose fun...
متن کاملProton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
Hydrogen (H(+)) and hydroxide (OH(-)) ions in aqueous solution have anomalously large diffusion coefficients, and the mobility of the H(+) ion is nearly twice that of the OH(-) ion. We describe molecular dynamics simulations of a dissociating model for liquid water based on scaling the interatomic potential for water developed by Ojamäe-Shavitt-Singer from ab initio studies at the MP2 level. We...
متن کاملUltrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Har...
متن کاملPhotoinduced proton coupled electron transfer in 2-(2'-hydroxyphenyl)-benzothiazole.
We characterize the structural and electronic changes during the photoinduced enol-keto tautomerization of 2-(2'-hydroxyphenyl)-benzothiazole (HBT) in a nonpolar solvent (tetrachloroethene). We quantify the redistribution of electronic charge and intramolecular proton translocation in real time by combining UV-pump/IR-probe spectroscopy and quantum chemical modeling. We find that the photophysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 115 16 شماره
صفحات -
تاریخ انتشار 2011